快3平台_快3平台
快3平台2023-01-31 16:05

快3平台

数据新闻多元,应探索更多交互体验******

陈积银

  (陈积银简介,西安交通大学新闻与新媒体学院教授,博士生导师。中国数据新闻大赛创始人,西安交通大学青年拔尖人才(A类),中组部国家万人计划青年拔尖人才,陕西省智媒研究基地主任,福建省闽江学者特聘教授。曾获第六届全国广播影视“十佳百优”理论人才称号。主持中宣部、中组部、教育部等部委项目多项,在CSSCI期刊等发表论文40余篇。)

  随着我国前沿科技的迭代更新,媒体融合不断向纵深发展,数据新闻应运而生。新闻生产方式的创新发展也反映出大众信息需求的变化。全媒体环境下,加强媒体融合视角下数据新闻的技术创新与理念创新成为数据新闻发展的题中应有之义。近年来,新文科建设的呼声高涨,数据新闻也成为新闻传播教育中颇有成效的尝试,推进了技术与人文教育的进一步融合。《中国新闻出版广电报》记者日前就媒体融合视角下数据新闻的发展前景及新文科思维背景下数据新闻人才培养等问题,采访了西安交通大学新闻与新媒体学院教授陈积银。

  数据新闻教学应势而生

  经过多年的发展与沉淀,数据新闻应用日臻成熟,业界成立了不少专门的制作团队,学界则设置相关课程以培养专业人才。

  “数据新闻是在技术推动下发展起来的。”陈积银介绍说,在智能化、5G及媒体融合情境下,数据新闻融合也将获得新的发展机遇,朝着更加成熟与理性的方向发展。

  陈积银认为,数据新闻的实践性、专业性非常强,业界的实践领先于学界,但无论是学界还是业界,人才匮乏的现象仍然存在。因此,数据新闻的未来发展方向主要集中在提升人员数据素养,培育数据发掘、可视化制作人才团队等几个方面。

  由于学界、业界对数据新闻关注度逐渐提高,学界与业界融合也更加紧密。“学界与业界应积极构建平台,推动优质资源接轨,为数据新闻的发展蓄力。”陈积银建议,可以通过工作坊沙龙等形式进行培训与交流,关注数据新闻制作的核心环节,共同寻找难题的应对方案。

  “为贯彻中央媒介融合有关精神,培养大数据时代的一流新闻人才,我于2015年创办了中国数据新闻大赛。”陈积银介绍,该赛事的初衷是“以赛促教”,为中国新闻教育更好地适应大数据时代需求提供探索平台,为国内新闻教育学界师生数据新闻作品提供展示平台。目前,该赛事已经成为引领国内重要新闻院校进行科教融合,开展学科交叉融合(传统新闻传播与现代信息技术)的一个新赛道,并获得业内不少数据新闻团队的认可与积极参与。西安交通大学通过大赛平台,有效促进了文、理、艺交叉的新闻传播教育探索,近年来培养了不少复合型、专家型、国际化的新型新闻人才。

  “国内数据新闻的议题越来越多元,应进一步探索交互体验形式。”陈积银说,在每一届的中国数据新闻大赛作品中,都包含经济、政治、环境、民生、体育、娱乐等多种议题,而其交互性逐年提升。未来,将会有更多的创作团队对可听化的数据新闻进行探索,或将数据新闻与游戏等进行结合,实现内容形式和读者体验的双重升级。

  探索学科交叉教学模式

  “当前数据新闻在追求可视化效果的同时一定程度上忽略了新闻价值和社会功能。”陈积银认为,现在数据新闻在呈现形式上也存在一些问题。部分以网页形式呈现的数据新闻在移动端阅读时存在不兼容问题,导致数据新闻传播受阻。此外,移动阅读的快节奏和碎片化对数据新闻而言也是一个挑战,数据新闻在呈现方式上应注重数据的多样性、内容的交互性及叙事的多维度,以吸引受众阅读和交互。

  “尽管当前数据新闻的制作还存在普惠性不强、交互性有待提高、可视化水平参差不齐、思想性有待提高等问题,但也呈现出有数据更有共享、有图表更有内容、有故事更有情怀、有融合更有信仰、有问题更有反思等鲜明特点。”陈积银建议,未来在选题方面,期望更多作品与“坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康”相结合;在数据使用规范方面,希望作品全面保障用户数据安全;在可视化呈现方面,期待作品在可视化实践时注重庞大数据的易读性,以增强传播效果。

  “媒体融合大背景下,新闻人才培养特别是数据新闻人才培养过程中存在着一些亟待解决的问题。”陈积银认为,传统新闻学院的教育以文科为主,教师与学生存在技术性知识结构短板的问题,具备跨学科背景的数据新闻领域教师相对较少。目前,我国不少高校的新闻传播学院不断探索专业设置和教学设计,在发展中逐渐走向学科交叉的教学模式。同时,还应注重培养学生的数据思维和算法思维,积极学习数据新闻所需的技术性知识与技能。

  “对于文科学生而言,网页制作、可视化技术等操作技能的学习,短期内掌握有些困难,这使得数据新闻教学局限于理论知识。”陈积银说,中国数据新闻大赛为学生们提供了一个理论与实践相结合的机会,缩小了数据新闻领域人才培养与新闻行业需求之间的差异。近几届大赛作品,在选题上内容多元、角度丰富、注重社会价值,在可视化呈现上技术多样、形式丰富、交互性强,在评审方面坚持学界、业界与政界相结合,在教学实践方面收到了良好的成效。

  契合新文科背景要求

  受疫情影响,智慧教育已成为教育模式转型发展的客观需求,慕课、云课堂现已成为教育新景象。这些新的教育模式颠覆了原有的传统教育模式,同时也促进了新闻传播教育的创新与发展。

  “我们需要立足学界、携手业界、服务政界、融入世界,在传统的教育模式上进行自我教学革命。”陈积银认为,业界在技术研发方面的投入,政界在引智方面的投入,使得其在新闻传播技术、应用方面的水准远超学界。因此,当前的新闻传播教育一方面应积极改革,拥抱现代信息技术带来的红利;另一方面,也应保留原来教学中的先进经验,守住意识形态的红线,积极用马克思主义新闻观武装师生的头脑。

  “作为新闻传播教育工作者也应完成相应的转变,进一步激发学生学习的主动性、积极性,培养学生的创造力、表达欲、动手能力和团队合作精神。”陈积银建议,一是转变原来上课靠书本的理念,将研讨式教学与体验式教学相结合、启发式教学与自主学习式教学相结合;二是转变原来的身份,从知识传授,转化为方向引领、动力激励、方法指导、结果督察和过程讨论;三是提升前沿知识的学习与科研能力,向学生传授新闻传播国际前沿知识。

  “西安交通大学新闻与新媒体学院以工字牌为旗帜,新闻人才培养方案的建设契合了新文科建设背景下新闻教育改革的整体趋势。”陈积银介绍,新闻与新媒体学院组建计算机、公共管理、新闻传播等多学科背景的核心师资队伍,根据新文科建设理念与市场需求,建设协同育人基地以提升学生的数据素养。学院与政企共建的“陕西省智媒研究基地”沿用文理交叉的思路,背靠政界、立足学界、携手业界,为学生提供全智能化的平台资源,使学生在学习传统新闻采编技能的同时,学习短视频摄制、大数据舆情分析等新媒体技术技能。

  在教学实践方面,陈积银一直鼓励学生放下课本、走出校园、走进社会,在实践中发现问题、解决问题。他介绍说:“在数据新闻课程教学上,我鼓励同学们根据特长和兴趣自由组队,走到社会上采访调研、收集数据、自主解决难题,共同完成一个数据新闻作品的制作。同学们认为这种学习方式动手操作性强,比课堂教学收获更大。”

  “通过鼓励学生们自由组队参加中国数据新闻大赛,磨炼提升了他们的团队合作、沟通协调、专业实践以及前沿探索等各项能力。”陈积银认为,大赛“以赛育人”“以赛促教”,推动了传统新闻传播教育模式向现代化转型,引导学生在作品制作中从简单的多学科知识累加向多学科知识相融转变。同时,也为高校学生和新闻工作者搭建起新闻传播教育学界与业界沟通的桥梁。

  (中国新闻出版广电报记者 杜一娜 常湘萍)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

快3平台地图